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A companion paper (Part 1) employed a three-dimensional numerical simulation
to examine the vorticity dynamics of the initial instabilities of a breaking internal
gravity wave in a stratified, sheared, compressible fluid. The present paper describes
the vorticity dynamics that drive this flow to smaller-scale, increasingly isotropic
motions at later times. Following the initial formation of discrete and intertwined
vortex loops, the most important interactions are the self-interactions of single vortex
tubes and the mutual interactions of multiple vortex tubes in close proximity. The
initial formation of vortex tubes from the roll-up of localized vortex sheets gives the
vortex tubes axial variations with both axisymmetric and azimuthal-wavenumber-2
components. The axisymmetric variations excite axisymmetric twist waves or Kelvin
vortex waves which propagate along the tubes, drive axial flows, deplete the tubes’
cores, and fragment the tubes. The azimuthal-wavenumber-2 variations excite m = 2
twist waves on the vortex tubes, which undergo strong amplification and unravel
single vortex tubes into pairs of intertwined helical tubes; the vortex tubes then
burst or fragment. Reconnection often occurs among the remnants of such vortex
fragmentation. A common mutual interaction is that of orthogonal vortex tubes,
which causes mutual stretching and leads to long-lived structures. Such an interaction
also sometimes creates an m = 1 twist wave having an approximately steady helical
form as well as a preferred sense of helicity. Interactions among parallel vortex tubes
are less common, but include vortex pairing. Finally, the intensification and roll-up
of weaker vortex sheets into new tubes occurs throughout the evolution. All of these
vortex interactions result in a rapid cascade of energy and enstrophy toward smaller
scales of motion.

1. Introduction
Numerous observational and numerical studies in recent years have examined the

transition to and the statistical structure within turbulent motions with particular
emphasis on vortex structures (Rogers & Moin 1987; She, Jackson & Orszag 1990;
Vincent & Meneguzzi 1991, 1994; Sandham & Kleiser 1992; Cadot, Douady &
Coudet 1995; Metais et al. 1995). Indeed, the nature of the transition from laminar to
turbulent flow remains one of the more compelling problems in fluid dynamics. Yet
it has proven difficult to model the transition numerically with both a geophysical
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source of turbulence and sufficient resolution to describe the important processes
and interactions. The purpose of this paper is to provide such an analysis using a
numerical simulation of a breaking internal gravity wave in a stratified and sheared
fluid. Such waves are thought to be important sources of turbulence in the terrestrial
and planetary atmospheres, in the oceans, and in stellar interiors.

Our initial studies of wave breaking focused on the character and energetics of
wave instability and its effects on the wave and mean state using coarser model
resolution (Andreassen et al. 1994; Fritts, Isler & Andreassen 1994; Isler, Fritts
& Andreassen 1994; Fritts, Garten & Andreassen 1996). These studies, along with
those of Winters & D’Asaro (1994), provided the first descriptions of the transition
to three-dimensional structure in a breaking wave at smaller scales of motion in a
stably stratified and sheared environment. The instabilities which result contribute
importantly to wave dissipation and to eddy transports of momentum and heat within
the fluid. However, these studies did not provide the resolution necessary to address
the small-scale vorticity dynamics in detail.

More recently, a companion paper by Andreassen et al. (1998), hereafter denoted
Part 1, has examined the vorticity dynamics accompanying the primary and secondary
instabilities occurring within a breaking gravity wave at higher resolution. For rela-
tively high-frequency (ω 6 N) wave motions, the primary instability takes the form of
counter-rotating streamwise† vortices driven by baroclinic sources within convectively
unstable regions of the wave field. The streamwise vortices act on the adjacent envi-
ronmental shears, causing the formation and intensification of spanwise vortex sheets.
Continued stretching of these sheets causes them to become dynamically unstable, so
that a series of small-scale, spanwise-localized, Kelvin–Helmholtz (KH) instabilities
develops. The resulting vortex tubes evolve with their axes along the vorticity field
of the vortex sheets (i.e. in the spanwise direction) and link continuously to the
streamwise vortices accounting for sheet intensification. The result of these instability
processes is a series of intertwined vortex loops, closely resembling the ‘horseshoe’
or ‘hairpin’ vortices observed in boundary layer flows and sheared homogeneous
or stratified turbulence (Robinson 1991; Sandham & Kleiser 1992; Gerz, Howell &
Mahrt 1994; Metais et al. 1995). Thus, the interactions of the loops we observe are
likely to be representative of such turbulent transitions in many flows.

During the transition to smaller scales, the vortex loops exhibit a spectrum of in-
teractions and dynamics, many of which have been observed in laboratory studies or
previous numerical simulations, but which are, for the most part, not well understood
at present. For example, oscillations of vortex tubes have been studied in the labora-
tory (Hopfinger, Browand & Gagne 1982; Maxworthy, Hopfinger & Redekopp 1985)
and in numerical simulations (Melander & Hussain 1994, 1995; Schoppa, Hussain
& Metcalfe 1995). These oscillations are copiously present in our simulation and
appear to be manifestations of Kelvin vortex waves, or twist waves, first discovered
by Kelvin (1880). Twist waves are excited by both the initial state of a vortex tube
(Arendt, Fritts & Andreasson 1997) and by mutual interactions with neighbouring
tubes. In our simulation, the waves lead to the unravelling and fragmentation of the
vortex tubes; laboratory studies have demonstrated similar events (Cadot et al. 1995).
Reconnection events, which have been studied in many contexts (Pumir & Siggia
1990; Boratav, Pelz & Zabusky 1992; Shelley, Meiron & Orszag 1993), are likewise
present.

† As in Part 1, the two horizontal orthogonal directions x and y will be referred to as stream-
wise and spanwise respectively. The initial wave propagation is streamwise (with a small vertical
component), as is the background shear flow. The vorticity of the background shear flow is then
spanwise.



Vorticity dynamics in a breaking internal gravity wave. Part 2 49

Our purpose in this paper is to understand the vorticity dynamics and evolution
subsequent to the primary convective and secondary dynamical instabilities examined
in Part 1. Specifically, we will evaluate the perturbations to and the interactions
among the vortex loops resulting from the initial flow instabilities. These interactions
drive the evolution toward smaller scales and more chaotic and isotropic structure.
An overview of the enstrophy and vortex evolutions during this latter phase of wave
breaking is presented in § 2. Section 3 examines in greater detail several processes
that appear to play major roles in the cascade toward smaller scales. These include
vortex sheet intensification and roll-up, orthogonal vortex stretching, and mode-zero
and -two twist waves on the vortex tubes. Section 4 describes additional interactions
which appear to be significant in, but less central to, the vortex morphology, including
mode-one twist waves, pairing events among aligned and closely spaced tubes, and
viscous reconnection of vortex tubes or fragments in close proximity. A description
of the enstrophy spectra and of viscous influences at small scales is presented in § 5.
Our conclusions and a discussion of the relevance of these results to general sheared
turbulence studies are presented in § 6.

2. Enstrophy and vortex evolution
In this section, we provide an overview of the enstrophy and vortex morphology

in the wave breaking simulation extending from t = 70 to 80, approximately 0.7
buoyancy periods† beyond that described in Part 1. Figure 2(d) in Part 1 at t = 70
reveals a field of intertwined and increasingly interacting vortex loops (using λ2 of
Jeong & Hussain 1995, as discussed in Part 1) arising from the primary convective
and secondary dynamical instabilities. The further evolution of this field is displayed
in figure 1(a–d) at t = 72.5, 75, 77.5, and 80. The increase in flow complexity is
dramatic. The vortex loops present at t = 70.0 are fragmented into pieces, and new
smaller vortex tubes continue to be formed (small blue and grey wisps in figure 1).
At later times, apart from a large-scale correlation with the phase of the original
gravity wave, the small-scale flow is almost isotropic, and has little evidence of its
initial state. The vortices lose their initial streamwise and spanwise orientation and
structures appear at significantly higher wavenumbers (by a factor of 2 to 3), as will
be discussed in § 5. Also, the maximum vorticity and enstrophy at small scales of
motion increase throughout the simulation (see figures 7 and 8 of Part 1).

In order to examine the relationship between enstrophy and the vortices defined
by λ2, we now focus on a subdomain at the upper left of the images in figure 1. This
subdomain is shown in figure 2 for t = 70 to 75. Here, the enstrophy is pink (shown
for values of 25.0 and higher; a typical background enstrophy is 5.0–10.0), and λ2 is
yellow for large negative values and blue for small negative values. In part (a), we see
four prominent spanwise vortices at various stages of development and interaction. All
four have arisen due to KH instability of initial spanwise vortex sheets, as addressed
in Part 1. The two vortices on the left have formed on the same sheet, while the two
vortices on the right have formed on distinct vortex sheets and are in a more advanced
stage of interaction with their neighbours. As time proceeds, the vortex tubes unravel
and break into fragments. Consider the left-most vortex for example. By t = 73.0,
this vortex is beginning to unravel, and by t = 75.0, it has become an intertwined
pair of helices. This effect is common in our simulations (see e.g. the centremost tube
in figure 2), and will be discussed in the context of twist waves in § 3.4.

† The times are normalized to the sound crossing time of a density scale height. With this
normalization, the buoyancy period is 14.
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(a) (b)

(c) (d)

Figure 1. Volume renderings of λ2 from below with positive x to the right at (a) t = 72.5, (b) 75, (c)
77.5, and (d) 80. Colour and opacity scales are shown at the lower left. The opacity scale extends
from transparent to opaque; both scales show negative λ2 with zero at the right.

The enstrophy is seen to be largely associated with the evolving vortex tubes
throughout this evolution, although there is still some enstrophy that is distinct
from the vortex tubes, and is sheetlike rather than tubelike (see the hazy pink areas
figure 2a). This contrasts with earlier times in the wave breaking where the enstrophy
was mostly confined to sheets (see figures 2 and 3 of Part 1). As the evolution
progresses, some of the enstrophy sheets are stretched by neighbouring vortices,
intensify locally, and roll-up into vortex tubes. This process is seen at several sites
in figure 2. One such event occurs from t = 70 and 71 (figure 2a,b) just to the left
of the lower end of the spanwise tube near the centre of these images. This sheet
has no λ2 signature at t = 70, but contains a weak streamwise vortex (shown in
λ2) at t = 71 which intensifies in subsequent images and attaches to the adjacent
spanwise tube. Another example occurs from t = 71 and 72, where a strong spanwise
vortex tube arises on the enstrophy sheet at the lower left of the image at t = 71.
Additional vortices arise in the same manner in other locations, in each case on
weaker vortex sheets and at smaller scales, until virtually all of the enstrophy with
a magnitude sufficient to be displayed is associated with vortex tubes. Thus vortex
sheet intensification and roll-up remains an important process throughout this flow
evolution, as it probably is in other turbulent flows as well (Betchov 1957; Lundgren
1982).

3. Primary vortex dynamics
In evaluating the vortex dynamics accompanying the evolution toward smaller

scales and increasing isotropy, we have identified several processes that appear to be
important. The discussion in this section addresses the vortex dynamics that we judge
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(b)
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(f)

Figure 2. Two-field renderings of enstrophy and λ2 viewed from below with positive x to the right
from t = 70 to 75 (a–f ) in a subdomain at small x and small y (the upper left corner of the views
from below in figure 1). Colour scales are shown at the lower right.

to be key to the transition to and the cascade within a turbulent flow. Other vortex
interactions that participate in the transition, but are judged to be less important, are
described in the following section.

3.1. Orthogonal vortex stretching

The key element in vortex intensification on short time scales is vortex stretching, either
of the ambient shear field by localized vortices (or vice versa) or of localized vortices
by other localized and closely spaced vortex structures. For this process to be effective,
the local component of vorticity, ωi, and the diagonal component of the strain tensor,
Sii, must contribute a source, ωiSii, which exceeds other baroclinic, compressional, and
viscous contributions. This stretching source is particularly strong when the vorticity
lines of two neighbouring vortex structures are nearly orthogonal. Physically, the
stretching is due to a flow divergence along the vorticity. Because of the geometry of
the flow, vorticity is stretched on the upstream side (relative to the point of closest
approach) of an orthogonal vortex, and scrunched on the downstream side. (We will
use the term scrunching for weakening or negative-stretching of vorticity due to local
flow convergence.) This mutual stretching (and scrunching) is illustrated schematically,
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(a)

(b)

(c)

Figure 3. Schematics of three of the primary vortex interactions which account for the dominant
vortex structures and drive the cascade of enstrophy toward smaller scales. Series (a) illustrates
the differential stretching and scrunching of orthogonal, mutually interacting vortices leading to
intensification and long-lived x-patterns structures. Series (b) illustrates the intensification of a weak
vortex sheet, its attachment to a stronger vortex tube, and the subsequent twist wave amplification,
propagation, and fraying under unstable conditions (see text for details). Series (c) illustrates the
impact of mode-two twist waves initiated at different sites on a vortex tube that propagate toward
each other and result in the unraveling and breakup of the vortex tube.

with vortex thickness indicating strengthening and dashed lines denoting weakening,
in figure 3(a).

Noting that the vorticity lines of the vortex sheets are predominantly spanwise
(vertical in figure 2) and that the vorticity lines of a vortex tube are roughly along
the tube, we note that there are indeed numerous sites where vortex structures in
figure 2 have approximately orthogonal alignments and undergo local intensification.
When the stretching involves a vortex sheet, roll-up and tube formation can result, as
discussed in § 2 and § 3.2. An important consequence of this mutual stretching is the
preferential amplification of the orthogonal vortex structures, causing these structures
to become most prevalent as the field evolves. Indeed, these ‘x-patterns’ appear as
frequent and persistent features in the vortex evolution and can be seen surviving
to late times relative to other features of the flow in figure 1. Additional examples
can be seen in figure 6 and will be discussed further below. Such ‘x-patterns’ were
observed by Boratav et al. (1992) and Pumir & Siggia (1990) to lead ultimately to
anti-parallel vortex alignments at late times in an unstratified flow. However, late-time
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t = 71.5 t = 72.5 t = 74.0 t = 75.0

Figure 4. Volumetric views of the vorticity field viewed from below with positive x to the right in
a small subdomain in the lower central region of the images shown in figure 1. Upper panels show
the vorticity vectors (with white/blue weak and red/yellow strong). Lower panels show vortex tubes
rendered with λ2 in yellow and having transparent cores and the sources and sinks of enstrophy
due to stretching, with positive (negative) red (blue). Times are t = 71.5, 72.5, 74 and 75.

anti-parallel alignments are not observed in our flow, perhaps as a result of the more
viscous nature of the vortex dynamics in our simulation.

3.2. Vortex sheet and tube formation

Formation and intensification of vortex sheets and their subsequent roll-up into vortex
tubes were identified as initial steps in the transition to and within turbulent flow
by Betchov (1957) and Lundgren (1982). Our results in Part 1 and the previous
discussion of figure 2 show that these processes also occur in a stratified fluid and
play a continuing role throughout the flow evolution. Sheet roll-up occurs on sheets
which have been intensified by vortex stretching from the flow of a neighbouring
orthogonal vortex, as discussed above. The roll-up proceeds by analogy with the
two-dimensional KH instability of an infinite vortex sheet studied by many authors
or the three-dimensional KH sheet instability described in Part 1.

A specific example of the intensification and roll-up of a vortex sheet due to its
proximity to an adjacent vortex tube is shown in figure 4 with vorticity vectors in the
upper row, and with volumetric views of vortex tubes and sources/sinks of enstrophy
due to stretching in the lower row. Vorticity vectors having small magnitudes (3.0–4.0)
are coloured white/blue, while those having large magnitudes (6.0–8.0) are coloured
red/yellow. Vortex tubes, which are defined by λ2 are coloured yellow, and are given
transparent cores so that the sources within are visible. The positive/negative sources
of enstrophy due to stretching are coloured red/blue (at values in excess of ±12.0).
The initial structure displayed is located in the upper left central portion of figure 1(a).

At t = 71.5 in figure 4, a weak vortex sheet (displayed in white vectors) overlies
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a prominent vortex tube (displayed in yellow λ2). The vorticity vectors of the sheet
and the tube are approximately orthogonal. As the evolution progresses, this vortex
sheet intensifies due to stretching by the underlying vortex tube. This can be seen
clearly as a positive (red) source of enstrophy at the location of the vortex sheet at
t = 72.5, and an increase in the magnitude of the vorticity vectors comprising the
sheet (note the appearance of blue and green vectors). Continued stretching by the
vortex tube intensifies the vortex sheet locally, until it rolls up via the KH instability.
Noting that the dynamical timescale of a shear layer is t ∼ (dU/dz)−1 = ω−1 which
is roughly t ' 0.2 for this sheet, we see that the roll-up of the sheet takes 5–10 shear
timescales. Having rolled up, it achieves the local rotational character necessary for
it to appear as a vortex tube in λ2 (see the short yellow tube at t = 74 and 75).
The roll-up of this vortex sheet has led to the creation of a new vortex tube with a
strength comparable to the tube responsible for its intensification. The vector fields
at t = 74 and 75 also show a tendency for the emerging vortex tube to attach to the
sheath of the initial tube in a helical fashion. This process will be examined in greater
detail in § 3.4.

3.3. Mode-zero twist waves

We noted earlier that the vortex loops arising from the secondary KH instability tend
to fragment into pieces. One of the causes of this fragmentation is the presence of
mode-zero twist waves of large amplitude. Figure 5 shows an example of such a wave
on a single span-wise vortex tube. Figure 5(a–e) show λ2 at successive times with
opaque green/blue being the largest magnitude and wispy grey being the smallest
magnitude. Figure 5( f–h) show the vorticity vectors (ranging in magnitude from 3.0 to
8.0 – all coloured dark blue), isosurfaces of enstrophy sources/sinks due to stretching
(±15.0 coloured red/light-blue respectively), and vorticity lines (yellow) at several
times corresponding to the first, second, and fourth λ2 images (figure 5a, b, d). The
vorticity lines shown are not the same lines in each panel; rather, in each individual
panel, lines are chosen to give a sense of the vorticity topology as a whole.

Concentrating first on the λ2 images, we see that at t = 70.5 (figure 5a), the tube
is strongest in λ2 near the ends. As time progresses, λ2 becomes stronger everywhere
along the tube except at the upper end, where it weakens (see t = 71.5 and 72.0).
At later times, the tube begins to bend in the middle (t = 72.5), and then becomes
depleted in the middle and unravels at the ends.

To understand this evolution, consider the panels showing the vorticity lines and
enstrophy sources/sinks. In the first and second of these (figure 5f, g), one sees that
the vorticity lines are slightly twisted near the top of the vortex tube and, to a lesser
extent, near the bottom of the tube. This is because the ends of the parent vortex
sheet roll up to become the ends of the vortex tube sooner than the middle of the
sheet rolls up to become the middle of the tube. The twisted vorticity induces an axial
(i.e. along the tube) flow which, in turn, strengthens/weakens the vorticity where the
flow diverges/converges along the axis. The vorticity in the lines is pointed downward
in figure 5, so at t = 71.5 the axial flow is from the middle of the tube and toward the
upper end (one can use the Biot–Savart law or the right-hand rule to see this). This
produces the red enstrophy source in the middle of the tube at t = 71.5 and the blue
enstrophy sink above it. The enstrophy source strengthens the tube in the middle, so
that at a later time, the middle of the tube rotates faster than the ends and the sense
of twist of the vorticity lines reverses; note that the sense of the twist of the vorticity
lines at t = 72.5 in figure 5(h) is opposite that at t = 71.5. When the twist reverses, the
axial flow, as well as the flow’s enstrophy sources/sinks, also reverses; in figure 5 the
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 5. Detail of the λ2 evolution exhibiting formation and breakup of the spanwise vortex tube
at the centre of the subdomain shown in figure 2 at (a) t = 70.5, (b) 71.5, (c) 72, (d) 72.5, and (e)
73.5. Additional images illustrate the twisted vorticity fieldlines and the enstrophy sources and sinks
(red positive and blue negative) due to twist wave propagation which account for vortex breakup
at ( f ) t = 70.5, (g) 71.5, and (h) 72.5. Colour and opacity scales for λ2 are as in figure 1.

enstrophy source in the middle of the tube at t = 71.5 is replaced by an enstropy sink
at t = 72.5. Although it is not shown in figure 5, the magnitude of the inward axial
flow responsible for this sink is about 0.05. This enstrophy sink weakens the middle
of the tube, so that at later times the tube fragments, as seen in λ2 at t = 73.5. The
tube is simultaneously unravelling from the ends in a process which will be discussed
in § 3.4.

Similar events on other spanwise vortex tubes are observed elsewhere within the
wave breaking simulation, suggesting that this is an important process in the flow
evolution. In most cases, however, the initial vortices are stronger near the middle
rather than near the ends as above because the middle of the parent vortex sheets
rolls up faster than the ends. The final result is nonetheless the same, with the twist
inducing an inward axial flow, and the flow, in turn, leading to enstrophy depletion
in the middle of the vortex tube, and, ultimately, fragmentation.

The sequence of events described above is also responsible for the propagation of
m = 0 twist waves along a vortex tube, as first described by Kelvin (1880). Similar
dynamics of a vortex tube were recently described in some detail by Melander &
Hussain (1995) and Schoppa et al. (1995) in association with vortex core dynamics. In
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(a) (b) (c) (d) (e)

( f )

(g) (h) (i) ( j )

Figure 6. As in the λ2 images in figure 5 showing the unravelling of two streamwise vortex tubes
due to propagation of mode two twist waves on vortex tubes having negative (upper series, a–e)
and positive (lower series, f–j) streamwise vorticity: (a–e) times t = 72 to 76, ( f–j) times t = 75 to
79. In each series, the images display the amplification and propagation of an m = 2 wave packet,
and the consequent fraying of the vortex tube into a double helix.

general, twist waves are dispersive travelling waves on vortex tubes. The axisymmetric
(m = 0, where m is the azimuthal wavenumber of the wave) modes propagate by
twisting the vortex lines of the tube, thereby creating an axial flow. The axial flow
changes the enstrophy of the tube by stretching/scrunching. This, in turn, changes
the rotation rate of the tube which then changes the twist. From this point of view,
the event shown in figure 5 is a standing axisymmetric twist wave on a vortex tube
excited by the initial state of the tube (Arendt et al. 1997). The wave is of such
large amplitude that it irreversibly depletes the middle of the vortex tube during its
minimum. Azimuthal modes of higher m also exist. Of particular importance for our
results are m = 2 modes which are responsible for the unravelling of vortex tubes
into pairs of intertwined helices; this will be discussed in the next subsection.

3.4. Mode-two twist waves

A type of twist wave which plays a major role in the fragmentation of vortex loops
is a mode two (m = 2) wave. These waves are generally excited where a vortex tube
is perturbed near its end by another vortex structure (either a tube or sheet). The
clearest and most long-lived examples of mode-two twist waves in our numerical
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solution arise due to upstream perturbations of the more axially uniform streamwise
vortex tubes. Two of these waves are in the upper left portions of the images shown
in figure 1. They are shown magnified in figure 6, with the evolution of λ2 for the two
different waves shown in the upper and lower rows of panels. The view is from below
with positive x (the streamwise direction) downward. In each case, a streamwise-
propagating m = 2 twist wave with a small amplitude is excited on the vortex tube;
the propagation of the wave is not seen since the domain displayed is adjusted to
track it. The waves grow until they are sufficiently large to unravel the vortex tube
into a pair of intertwined helices; a schematic of this is shown in figure 3(b). The
vorticity of the tubes is roughly 6.0, so that the circulation times of the two tubes
are τ = 4π/ω ' 2.0. From figure 6 then, the growth of the wave takes about one
circulation time. Figures 3 and 4 of Arendt et al. (1997) show analytic examples of
propagating m = 2 twist wave packets excited by initial perturbations of the vortex
tubes. That calculation is linear, and so it cannot lead to an unravelling of the vortex
tube, but the same intertwined helix structure is observed.

It is useful to understand how an m = 2 wave propagates. Essentially, such a wave
is propelled by self-advection, i.e. the vortex tube induces a velocity field, and is then
advected by it. This is a common effect in vortex dynamics; a simple example is that
of a vortex ring which is propelled in a direction perpendicular to its plane by its own
velocity field. In the case of an m = 2 wave, each helix of the pair induces a velocity
field with both an azimuthal rotating component and an axial component. The axial
component propels the wave by advecting the helices. For example, the tube shown
in figure 6(a–e) has vorticity vectors pointing upward (not shown). Given the sense
of the helices of the wave, it is easy to show (using the Biot–Savart law or simply
the right-hand rule) that the axial velocity is downward, and so the wave propagates
downward. At the head of the wave packet, where the tube is unsplit, the axial flow of
the approaching double helices precedes the helices themselves. The axial flow decays
with distance from the helices, and so it is convergent along the axis in front of the
wave. If the flow converges axially, it must diverge radially; this radial divergence
splits the vortex tube into the two component helices.

An important consequence of the self-advected propagation of an m = 2 wave is
that the direction of propagation is determined by the direction of the vorticity in
the tube and the sense of the helices of the wave packet. These two components
determine the direction of the axial flow, and hence the direction of propagation. In
the two examples in figure 6, the direction of the vorticity (not shown) is opposite for
each, being upward in the top example and downward in the bottom example. Since
the sense of the helices is also opposite for each, as is shown in figure 6, both waves
propagate downward. This effect is also apparent in Plates 3 and 4 of Arendt et al.
(1997). There, an initial small split in the middle of a vortex tube produces two wave
packets propagating outward from the split in opposite directions. The two wave
packets share the same direction of vorticity since they occupy the same vortex tube,
but they have opposite senses of helicity and so they propagate in opposite directions.

Another example of m = 2 twist waves is shown in figure 7. Here, the evolution
of λ2 for a spanwise vortex loop is shown in (a–e). As in figure 5, the last three
panels ( f–h) show vorticity vectors (having magnitudes greater than 4.0), vortex lines,
and enstrophy sources/sinks (isosurfaces of ±30.0) for the first, third, and fourth
λ2 panels. Consider first the λ2 evolution. After the dominant spanwise vortex loop
forms (t = 69, figure 7b), structures which underlie it and which are initially weak,
intensify (especially at the lower end of the tube) and appear to attach to the spanwise
vortex loop at t = 70–71 (although we will show that the lines comprising the weak
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7. As in figure 5 displaying vortex formation, attachment, mode-two twist wave excitation
and propagation, and vortex unravelling for a vortex seen at the lower left of figure 3(d) of Part 1
and figure 1(a). Successive λ2 images are at times (a) t = 68, (b) 69, (c) 70, (d) 70.5, and (e) 71. The
remaining images are as in figure 5 at ( f ) t = 68, (g) 69, and (h) 70.

vortex are already attached to the main vortex) and cause the loop to unravel. This
process is just the inward propagation of two m = 2 twist waves along the loop.
A schematic of the vortex loop unravelling at both ends is shown in figure 3(c) to
guide the interpretation of figure 7. The initial perturbations to the ends of the loop
in figure 7 generate m = 2 waves which propagate inward toward the middle of the
loop. In doing so, they unravel the loop into intertwined helices, as in the case shown
in figure 7. A similar event occurs in figure 5 and accounts for the unravelling seen
there.

To support this interpretation and to study the initial excitation of the m = 2 waves,
consider the vortex line evolution in figure 7( f–h). As before, the lines of vorticity
are not the same in each panel, but rather are chosen to give a sense of the vorticity
field topology at each time. Initially, vortex lines are distributed uniformly over the
vortex sheet (t = 68). Following the secondary KH instability discussed in Part 1, the
sheet rolls up into a tube (t = 70). The vortex lines are gathered into the tube, but
at the ends of the tube the vortex lines spread out again, so that the tube resembles
a frayed string. The vorticity at the frayed ends is also being intensified (note the red
enstrophy source, particularly that at the lower end of the vortex loop) because some
of the lines are orthogonal to each other and so stretch each other. At a later time
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(t = 70.5), the lines at the ends of the tube are gathered into two distinct groups, one
comprising the main vortex loop, and the other forming the second vortex discussed
above. The mutual advection of the two groups of lines drives the groups apart,
splitting the end of the tube and producing the m = 2 wave which travels inward.
In this case the axial flow speed corresponding to the wave is roughly 0.08. Note the
correspondence at t = 70.5 between the unravelling in the λ2 image and that in the
vortex line image; the structure which appears to attach to the vortex loop in the λ2

image is actually already connected to it by vorticity lines. To summarize then, the
vortex loop unravels because its initial formation leaves it with ‘frayed’ ends; these
ends intensify and excite m = 2 twist waves which propagate inward along the tube,
unravelling it as they go. These events are very common throughout our simulation.
Similar unravelling events have been observed in the laboratory (Cadot et al. 1995)
and may also be due to large-amplitude twist waves.

4. Secondary vortex dynamics
In this section we discuss several processes which play clear roles in the evolution of

the vortex field due to wave breaking, but which appear to be of minor importance to
the cascade of energy and enstrophy to smaller scales of motion. These include vortex
reconnection, mode-one twist waves, and vortex pairing. Of the three, reconnection is
easily the most pervasive, but perhaps the most difficult to quantify. Mode-one twist
waves, in contrast, are easily seen in the numerical solution, arise from perturbations
to vortex tubes, and can be described simply in terms of linear theory. Finally, vortex
pairing arises when two spanwise loops are close to each other and proceeds in a
manner analogous to such pairing events in two-dimensional flows.

4.1. Vortex reconnection

Reconnection events fall into two broad classes. The first are those described by
Kida & Takaoka (1994) in which vortex tubes undergo attachment without requiring
viscous reconnection of vortex fieldlines. An example of this sort of event is shown
in the λ2 images in figure 6 where the weaker tube at the bottom of the images
attaches to the main spanwise vortex tube. However, as shown in figure 6 and as
discussed previously, the two tubes are already connected by vorticity lines, so there
is no reconnection of fieldlines. Examples of this sort are common in our simulation
and are easy to spot through a close examination of figure 1.

The second class of reconnection events, those in which vortex fieldlines reconnect,
has been a topic of detailed study (Pumir & Siggia 1990; Boratav et al. 1992; Shelley
et al. 1993). An example of such an event occurring in our simulation is displayed in
figure 8 with λ2 shown in the upper panels and vorticity vectors and fieldlines in the
lower panels. The vortex structure on which we focus is the dominant loop seen at the
upper left at t = 65 and 67.5 in figure 2 of Part 1. This example involves the breaking
of one initially continuous vortex loop and the reconnection of the upper segment of
this vortex loop with a vortex tube arising on an adjacent vortex sheet. The initial
vortex loop is shown in figure 8(a, e) at t = 68. An adjacent vortex is seen to emerge
and strengthen behind (below in figure 8) the initial vortex loop from t = 70 to 71.
As this lower vortex underlies the vortex loop, the stretching and scrunching due to
their approximately orthogonal orientation enhances the leftmost part of the loop
and weakens the rightmost part just where the vortex loop itself is undergoing a
breakup (see figure 8c). At the last time (t = 72), the leftmost part of the vortex loop
has connected with the lower vortex.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 8. As in figure 5 displaying vortex separation and reconnection for the vortex structure seen
at the far right in the early images in figure 2 at times t = 68, 70, 71, and 72. The upper panels
(a–d) show λ2 while the lower panels (e–h) show vorticity vectors and fieldlines at the same times.

This sequence of events is supported by the parallel time series of the vorticity
fieldlines in figure 8(e–h). The vorticity lines are coloured by the local strength of
the vorticity with red corresponding to ω = 8.0 and blue corresponding to ω = 4.0.
Initially at t = 68, most of the fieldlines passing through the vortex loop are confined
to the vortex loop, and do not enter the lower vortex. This remains the case at t = 70
as the lower vortex strengthens. But as the vortex loop breaks up at t = 71, an
increasing number of the fieldlines through the initial vortex loop attach or reconnect
to the stronger lower vortex. At the last time shown, t = 72, all of the vorticity
fieldlines have reconnected between the vortex loop and the lower vortex tube, while
the severed portion of the initial loop has largely decayed away.

4.2. Mode-one twist waves

A final type of twist wave present in our numerical solution is the mode-one (m = 1)
twist wave. This wave perturbs a vortex tube into a single helix and propagates
through self-advection, as in the m = 2 case. An example of an m = 1 twist wave is
present in figure 2, on the vortex tube that slants at about 45◦ in the images. At the
earliest time shown, t = 70, the tube is unperturbed, but is frayed at its lower end.
At a later time, t = 74, the tube is bent into a wiggling pattern; a close examination
reveals that this is a helix. The wave is apparently excited by the close orthogonal
neighbouring vortex underlying it at its lower end. The flow of this orthogonal
neighbour bends the tube into a single wiggle (see t = 72), and the self-dynamics of
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the tube transforms the single wiggle into a full helix. As the vorticity in that tube is
about 6.0, the circulation time is about 1.0, so we see that the transformation to a full
helix takes a few circulation times. Curiously, the wave does not seem to propagate.
Rather, it appears to be a standing wave made stationary by the fact that the forcing
causing it (i.e. the neighbouring orthogonal vortex) is stationary. Alternatively, the
mode-one twist wave may be a true stationary wave, as such waves do occur (Saffman
1992); however a true stationary m = 1 wave has considerable radial structure within
the tube, and we find no evidence of this.

Mode-one twist waves are observed to be excited in our numerical solution at a
number of sites and times. Three clear examples are seen in figure 1(a) near the
top centre, at the lower edge of the domain about 1/3 of the distance from left to
right, and just above the latter structure and above the midpoint of the domain.
Additional examples are seen further downstream (to the right, and toward positive
x) and arising at later times in the evolution.

4.3. Vortex pairing

Vortex pairing, the mutual interaction of two parallel vortex tubes, is generally
understood on the basis of two-dimensional laboratory and numerical studies. This
process is often observed at a sheared interface in fluids that are homogeneous
or have a density gradient confined to the shear layer (Scotti & Corcos 1972;
Patnaik, Sherman & Corcos 1976; Koop & Browand 1979; Fritts 1984; Thorpe
1985; Metcalfe et al. 1987), and can be viewed as a degenerate resonant triad
interaction between the primary KH billow and its subharmonic (Davis & Peltier
1979). Pairing is less pronounced in a fluid that is stratified away from the shear layer,
however, for two reasons. First, the mean state Richardson number required for linear
subharmonic instability, and hence for efficient subharmonic excitation, is much less
than for the primary instability (Drazin 1958). Second, subharmonic excitation at
larger Richardson numbers is suppressed because the subharmonic has propagating
rather than evanescent character away from the shear layer and therefore radiates
away as it is excited (Fritts 1984). As a result, such pairing events are not observed
in the stratified atmosphere and oceans.

We observe several cases of vortex pairing in our results. Generally they resemble
their two-dimensional analogues, with the vortices approaching closely, mutually
advecting, and wrapping around each other. Pairing is different in three-dimensions
in two respects. First, the vortex sheets are localized in the spanwise direction, and
the resulting tubes are as well. At later times, the tubes are curved into loops with
the streamwise extensions of the loop legs coming close together. So, the pairing
proceeds between adjacent loops, with one loop (typically the upstream loop in our
simulations) being advected over and within the other loop, and at the same time
being weakened due to scrunching. The pairing then resembles leap-frogging vortex
rings.

The second difference in three-dimensions is that other processes often occur on
faster timescales within the loops and disrupt them before the pairing can proceed
very far. For example, on some occasions we observe twist waves (both m = 0 and
m = 2) fragmenting and unravelling the vortices while they are pairing. Pairing is
less disrupted if it takes place at small scales; presumably, twist waves are heavily
influenced by viscosity at these scales (as is the pairing) and are unable to compete
with the pairing. Furthermore, in a previous simulation employing lower resolution
and 25% greater dissipation, the twist waves at this stage of the simulation were
somewhat suppressed and the vortex pairing proceeded with less competition. Finally,
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Figure 9. Streamwise (a) and spanwise (b) wavenumber spectra at times of t = 60 (dash-dotted), 65
(short dashed), 70 (dotted), 75 (long dashed), and 80 (solid) showing the approach toward isotropy
at intermediate and smaller scales of motion. Also shown in each panel are lines having slopes of
+1/3 and −5.

it is possible that the pairing events facilitate other vortex interactions (e.g. twist
waves) by driving the more intense vortex structures closer together.

5. Enstrophy spectra and cascade
The contributions to the kx and ky enstrophy spectra from each component of

vorticity at t = 60, 70, and 80 were presented and discussed in Part 1 and were
shown to achieve a significant degree of isotropy at later times. Here we consider
only the evolution of the total kx and ky enstrophy spectra throughout the simulation.
These spectra are shown together at t = 60, 65, 70, 75, and 80 in figure 9 to permit
a comparison of spectral amplitudes from one time to another. At early times, the
flow is clearly anisotropic, as discussed in Part 1. The peaks in the spanwise spectra
correspond to the dominant spanwise instability, i.e. the streamwise convective rolls. At
later times, the spectra at intermediate and higher wavenumbers tend asymptotically
to a single curve. Also, there is close agreement between the streamwise and spanwise
spectral shapes and amplitudes at later times. (The absence of enstrophy at ky greater
than 48 at t = 65 is because this is the time at which the model fields were interpolated
to a finer resolution.) We also show lines having spectral slopes of +1/3 and −5 in
each panel of figure 9, corresponding to the slopes one might expect for enstrophy
in the inertial and viscous ranges of turbulence given energy spectra slopes of −5/3
and −7, the −7 being from the Heisenberg model (Heisenberg 1948). In the viscous
range, the agreement with the −5 slope is reasonably good, except very near the
Nyquist scales where the slope is steeper. In the inertial range, the spectra are flat
instead of positively sloped; an exception is at lower wavenumbers and early times in
the spanwise spectra where the spectra are positively sloped. The limited extent and
slope of the apparent inertial range are likely consequences of a turbulent Reynolds
number of 10 or less based on either integral scale or turbulence arguments (Fritts et
al. 1996). Nevertheless, the clear change in slope in the spectra at k ∼ 30 is suggestive
of the transition from an inertial range to a dissipative range.
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6. Summary and conclusions
We have examined the primary and secondary vortex interactions and perturbations

accounting for the transition to and the enstrophy cascade within a turbulent flow
arising due to the breaking of an internal gravity wave in a stratified and sheared
fluid. Our emphasis has been on the vortex dynamics occurring subsequent to the
initial wavefield instabilities discussed in Part 1. Vortex interactions judged to be of
primary importance in this context include the stretching of vortex structures (sheets
and tubes) by nearly orthogonal neighbouring vortex structures, the roll-up of vortex
sheets into tubes, and mode-zero and -two twist waves which are excited on the vortex
tubes. Other interactions also identified in our simulation, but judged to be of lesser
importance in the evolution of the vorticity field, include reconnection, mode-one
twist waves, and vortex pairing.

A typical sequence of events begins with orthogonal vortex structures stretching
each other. If one of the structures is a vortex sheet, the intensification due to the
stretching eventually causes it to roll up into one or more vortex tubes. However, the
vortex sheet is finite in extent, and so the resulting vortex tubes have variations in
their structure along their axes. These axial variations excite twist waves along the
tubes, particularly m = 0 and m = 2 waves, and these twist waves have such large
amplitudes that they fragment, unravel, or burst the tubes on which they propagate.
Twist waves can also be excited by interactions of vortex tubes with their neighbours,
leading to the same disastrous consequences for the tubes. In this way, the flow
evolves from sheets to tubes to tube fragments, each on smaller scales. The process is
somewhat self-sustaining as we find that the tube fragments themselves stretch sheets
which in turn roll up into new tubes; such processes occur until late in the evolution
when the flow is primarily viscously diffusing. Also, mutual stretching events termed
x-patterns were found to be relatively stable structures and to persist for long times.

Secondary vortex interactions are evident throughout the flow evolution, but appear
to play a less significant role in the cascade of enstrophy toward smaller scales
of motion. Reconnection events occur at many sites, although on some occasions
apparent reconnection events proved to be nothing more than the intensification of
separate portions of a vortex tube which already shared common vorticity fieldlines.
Mode-one twist waves are occasionally excited, usually by the effect of an orthogonal
neighbouring vortex. These waves were found to be relatively stable and steady,
probably because of the steady forcing from the neighbouring tube. Finally, vortex
pairing events were observed at several sites in our numerical results and were found
to contribute to vortex perturbations leading to their fragmentation and bursting. But
the pairing events themselves appeared to play a lesser role than other processes in a
less viscous environment.

Perhaps the most significant result of this study is the identification of vortex
processes which we believe to be responsible for dynamics within a broad class
of turbulent flows. Turbulence has, of course, been studied in many contexts (e.g. in
convection, in boundary layers, in strongly rotating fluids, or in our case in a breaking
gravity wave), and the details of the transition to turbulence vary according to which
flow instabilities contribute to the transition. However, a common feature shared by
many, if not all, turbulent flows is the formation of either vortex tubes or vortex loops
(i.e. horseshoe or hairpin vortices) (Rogers & Moin 1987; Robinson 1991; Gerz et
al. 1994; Sandham & Kleiser 1992; Metais et al. 1995). Similar structures also occur
in the general three-dimensional KH instability (Palmer, Fritts & Andreasson 1996)
and in many other flows of sufficiently high Reynolds numbers. The dynamics of the
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vortex loops that arise in our current simulation, then, are probably representative
of similar dynamics of vortex loops in other flows. For example, the twist waves we
observe on vortex loops are caused by axial variations of the vortex loops (see Arendt
et al. 1997 for a full discussion of this) and by interactions with neighbours. As such
variations inevitably occur on finite-length vortex tubes or loops, Kelvin vortex waves
and the consequent fragmentation and/or unravelling of the vortex loops should be
common in turbulent flows. In fact, double helix unravelling of vortex tubes has been
observed by Cadot et al. (1995) in laboratory studies of turbulent shear flow. In our
flows, we find that twist waves are ubiquitous, and the fragmentation and unravelling
of vortex loops that they cause is the predominant fate of the loops; very few vortex
loops die a peaceful death by viscous diffusion.
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